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Abstract

The increasing availability of parallel com-
puting architectures provides an opportunity
to exploit this power as we scale up evolution-
ary algorithms (EAs) to solve more complex
problems. To effectively exploit fine grained
parallel architectures, the control structure
of an EA must be decentralized. This is dif-
ficult to achieve without also changing the
semantics of the selection algorithm used,
which in turn generally produces changes in
an EA’s problem solving behavior. In this
paper we analyze the implications of various
decentralized selection algorithms by study-
ing the changes they produce on the charac-
teristics of the selection pressure they induce
on the entire population. This approach has
resulted in significant insight into the impor-
tance of selection variance and local elitism
in designing effective distributed selection al-
gorithms.

1 INTRODUCTION

One of the frequently stated virtues of evolutionary
algorithms (EAs) is their “natural” parallelism. The
increasing availability of parallel computing in both
coarsely and finely grained architectures provides a
tantalizing opportunity to exploit this power as we
scale p EAs to solve larger and more complex classes of
problems. However, most of the commonly used EAs
today (i.e., the ones for which we have the most the-
oretical and experimental results) have fairly strong
explicit and implicit forms of centralized control.

Considerable work has already been done in adapt-
ing EAs to both coarsely and finely grained paral-
lel architectures. The most natural adaptation for
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coarsely grained parallelism is an “island” model in
which there are a number of centralized EAs running in
parallel. The focus is on designing and implementing
useful “migration” mechanisms which allow exchange
of information between the independently evolving lo-
cal populations (Tanese 1989; Cohoon, Martin, and
Richards 1991; Whitley and Starkweather 1990).

This paper is the result of our interest in adapting
EAs to effectively exploit fine grained architectures.
In this case the focus is on parallelizing the algorithm
itself and many candidate methods for doing so have
been proposed and tested (Spiessens and Manderick
1991; Collins and Jefferson 1991; McInerney 1992). To
get a quick sense of the issues involved, consider the
following EA pseudo-code:

1. Randomly produce an initial population of indi-
viduals and evaluate them.

2. DO until some stopping criterion is met

(a) Select parents

(b) Produce children

(¢) Evaluate children

(d) Select members of the next generation

3. end DO

One can certainly map this onto a finely grained archi-
tecture directly by identifying a “master control pro-
cess” which assigns various tasks such as mating and
evaluation to “slave processes”. However, the master-
slave communication costs are generally high enough
that such simple and direct implementations produce
little if any performance improvements.

Consequently, the focus has been to identify ways to
reduce communication overhead by reducing the role of
the master process by decentralizing and distributing
control to the slave processes. Unfortunately, this is
difficult to achieve without changing the underlying
semantics of the algorithms themselves, thus shifting
the emphasis from parallelizing existing algorithms to
that of inventing new ones.



The primary causes of this are the traditional selec-
tion algorithms such as fitness proportional, rank pro-
portional, or truncation selection. In each case global
calculations are required which involve high communi-
cation overhead. Most attempts to decentralize them
produce different selection pressures than the central-
ized versions, and thus result in different evolutionary
behavior.

The one exception to this is tournament selection.
Since there is no need to keep any global statistics or
assign ranks, it is an obvious candidate to use in de-
centralized evolutionary algorithms (Fogel 1994; Gold-
berg and Deb 1991). However, as we will see in the
next section, even in this case there are subtle issues
that must be dealt with.

The goal of this work is to understand at a more fun-
damental level the implications of various approaches
to decentralizing selection so that more effective par-
allel EAs can be developed. In this paper we present
some initial results based on analyzing the changes in
the characteristics of the selection pressure induced by
decentralization.

2 DECENTRALIZED SELECTION
WITH GLOBAL POOLS

A selection algorithm involves two elements: a selec-
tion pool, and a selection probability distribution over
that pool. In most centralized EAs, the pool is the
entire population (i.e., a global pool). The selection
probability distributions are typically defined in terms
of one’s fitness relative to the fitness of the other in-
dividuals in this pool, and require ranking or fitness
averages to be maintained.

The one exception to this is tournament selection in
which k individuals are randomly picked with uniform
probability from the selection pool, and the one with
highest fitness is declared to be the winner and selected
to be a parent. It is quite straightforward to show
that binary tournament selection (k = 2) is equivalent
in expectation to the standard linear ranking scheme
in which the best individual gets 2 offspring and the
worst gets none (Goldberg and Deb 1991).

Hence, binary tournament selection is an attractive
candidate for decentralized selection. It is easily im-
plemented by assigning each member of the population
to a separate processor. Code can be executed (in par-
allel) on each processor which uses binary tournament
selection on the entire processor pool to select parents.
The appropriate number of parents can then produce
an offspring to (potentially) replace the current indi-
vidual assigned to that processor.

When one implements this decentralized form of se-
lection, two issues immediately arise. The first is that
communication costs, though lower than before, are

still high. This is a result of the fact that on most finely
grained architectures communication costs to distant
processors are significantly higher than to neighbor-
ing ones. This raises the question as to whether any
form of a global selection pool can be efficiently imple-
mented on such architectures and is addressed in more
detail in the next section.

The second, and more surprising result is that, if we
ignore communication costs and make comparisons via
the traditional “best so far” curves, binary tournament
selection appears to perform worse than the equivalent
linear ranking scheme, even though they have identical
selection pressure.

These observations came from an initial set of experi-
ments using a modified version of GENESIS 5.0. The
test suite consisted of De Jong’s functions F3, F4, Peak
problems (Peak 1, Peak 2, and Peak 6) and Hamilto-
nian circuit (HC) problems (HC12 and HC10). (See
(De Jong and Spears 1989) for a description of these
functions.) We used the standard settings for crossover
(0.60) and mutation (0.001), no elitism, a population
size of 100, and averaged the results over 100 indepen-
dent runs. Figures 1 and 2 give typical examples of
the results obtained.
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Figure 1: Best-so-far Performance Curves for function
HC10 using linear rank and binary tournament selec-
tion schemes and population size 100.

To understand these results better, we analyzed these
selection algorithms in more detail in the following
way. For each selection method, we calculated the ex-
pected number of offspring as well as statistics on the
actual number of offspring produced by each individ-
ual parent in generation 1 of a generational GA. Reli-
able statistics were obtained by using the same initial
population and, for each selection method, monitoring
the actual number of offspring produced by each mem-
ber of the population. This process was repeated 100
times with different random number seeds in order to
estimate the variance due to sampling error. The re-
sults are given in Figures 3-4 in which the individuals
were sorted by fitness from best to worst for plotting
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Figure 2: Best-so-far Performance Curves for function
Peak6 using linear rank and binary tournament selec-
tion schemes and population size 100.

purposes. For comparative purposes we also analyzed
the effects of proportional selection and included the
results in Figure 5.
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Figure 3: Variance in the expected number of offspring
using binary tournament selection, population size 100
for function HC10.

The most striking observation from this analysis is the
fact that, although both ranking and binary tourna-
ment selection have the same expected selection pres-
sure, binary tournament selection exhibits consider-
ably higher variance as illustrated in Figures 3 and
4. This is because linear ranking as well as propor-
tional selection (Figure 5) is usually implemented as
an “expected value” model which minimizes the vari-
ance due to sampling (De Jong 1975; Baker 1987). In
a centralized environment, tournament selection can
also be implemented as an expected value model by
guaranteeing that all individuals participate in exactly
k tournaments (Goldberg, Korb, and Deb 1989). How-
ever, this is difficult to implement in any efficient way

in a distributed environment, resulting in much higher
variance in the actual number of offspring produced.
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Figure 4: Variance in the expected number of off-
spring using linear rank selection, population size 100
for function HC10.
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Figure 5: Variance in the expected number of offspring
using proportional selection, population size 100 for
function HC10.

The larger variance of the distributed form of binary
tournament selection provides the most plausible ex-
planation for why it is consistently outperformed by a
linear ranking scheme which induces a selection pres-
sure that is identical in expectation, but lower in vari-
ance. Just as in the centralized cases, increased se-
lection variance increases genetic drift in finite pop-
ulations which in turn can have negative effects on
search performance (De Jong 1975). This suggests
that these “anomalous” results should diminish with
increasing population size, and that is what was ob-
served when the experiments were rerun with larger
population sizes (Figure 6).
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Figure 6: Best-so-far Performance Curves using binary
tournament selection with different population sizes
for function HC10.

Since one typically uses much larger population sizes
(> 1000) on finely grained parallel architectures, the
effects of the higher variance are not likely to have
too much of a negative impact on search performance.
However, larger populations also result in higher com-
munication overhead when global selection pools are
used. This has motivated many studies involving the
use of local neighborhood selection pools in order to
minimize communication overhead (Gorges-Schleuter
1989; Spiessens and Manderick 1991; McInerney 1992).
This, in turn, raises the question as to what kind of
selection algorithm should be used with local pools.
We address this issue in the remaining sections.

3 DECENTRALIZED SELECTION
WITH LOCAL POOLS

The idea of using local neighborhoods as selection
pools is attractive from both a communication over-
head point of view and its biological plausibility.
This requires introducing some sort of distance metric
and/or topology on the population so that the con-
cept of a neighborhood can be defined. Metrics involv-
ing distance in genotype or phenotype spaces (such as
sharing functions (Deb and Goldberg 1989)) generally
require global statistics and are not easy to implement
efficiently in a decentralized form. For finely grained
parallel architectures a more natural approach is to
introduce a topology in which individuals live on grid
points and neighborhoods defined in terms of nearby
grid points.

Various studies have proposed different topologies
(Miihlenbein 1991; Collins and Jefferson 1991; Baluja
1993). In this paper we focus on one of the more pop-
ular topologies, a two-dimensional toroidal grid. In

the experiments reported here the grids are square, al-
though rectangular grids have been proposed and stud-
ied as well. Neighborhoods surrounding a particular
grid point are defined in terms of the number of steps
taken (up, down, left, right) from that grid point. Ev-
ery grid point has a neighborhood which overlaps with
the neighborhoods of nearby grid points.

To achieve full decentralization, a modified EA is run
in parallel on each grid point with code to select par-
ents from its neighborhood, produce offspring, and
(possibly) replace the current individual assigned to
that grid point. The overlapping neighborhoods pro-
vide an implicit mechanism for migration of genetic
material around the grid. If the neighborhoods are too
large, we incur the same high communication overhead
discussed in the previous section. Consequently, most
studies consider only small neighborhoods.

In this paper we focus on threee small neighborhoods
of increasing size, the geometries of which are illus-
trated in Figure 7. Each such neighborhood defines
a local selection pool. Our goal is to understand bet-
ter the implications of choosing a particular selection
algorithm for use with these small neighborhoods. In
this paper we analyze three alternatives: proportional,
ranking, and binary tournament selection.
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Figure 7: Neighborhood Geometry

The dynamics of parallel EAs operating in overlap-
ping neighborhoods is extremely complex and difficult
to analyze formally. We provide some initial insights
into the choice of local selection algorithms by ana-
lyzing them empirically on the same test suite as the
one used in the previous section. Figures 8-10 illus-
trate the typical performance curves obtained using a
32 x 32 grid and a neighborhood of size 5, 9, and 13

respectively.

For all three neighborhoods, we see that the perfor-
mance of proportional selection is significantly below
the others. Ranking selection appears to produce the
best results, although as the pool size increases, binary
tournament selection produces search behavior equiv-
alent to ranking. It was not clear to us why either of
these observations should have been expected.

To understand this better, we analyzed the character-
istics of the emergent selection pressure induced on the
entire population by a local selection algorithm. As in
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Figure 8: Best-so-far Performance Curves for the three
selection schemes using a 32 x 32 toroidal grid and a
neighborhood size of 5 for function HC10.
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Figure 9: Best-so-far Performance Curves for the three
selection schemes using a 32 X 32 toroidal grid and a
neighborhood size of 9 for function HC10.

the previous section we use the same initial population
and, for each selection method, monitored the actual
number of offspring produced by each member of the
population. This process was repeated 100 times with
different random number seeds in order to estimate the
variance due to sampling error, and the results plot-
ted as if there was a single global pool with members
sorted by fitness from best to worst. Figures 11-13 il-
lustrate this for a 32 x 32 grid and a neighborhood size
of 5.

Several characteristics are immediately apparent when
comparing these with Figures 3-5 involving a global
pool. The first observation is that, under local rank-
ing and binary tournament selection, members with
similar fitness can have quite different expected num-
ber of offspring as indicated by the rather jagged ex-
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Figure 10: Best-so-far Performance Curves for the

three selection schemes using a 32 x 32 toroidal grid
and a neighborhood size of 13 for function HC10.

pected value lines. By contrast, local proportional se-
lection induces a much more uniform but weaker selec-
tion pressure than either local ranking or local binary
tournament selection.
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Figure 11: Variance in the expected number of off-
spring using binary tournament local selection, a 32 x
32 toroidal grid and a neighborhood size of 5 for func-
tion HC10.

With a little thought one can see that this is due to
the effects of individuals having to compete only in
small local neighborhoods. We know that ranking and
binary tournament selection produce a constant selec-
tion pressure that is independent of the actual fitness
values, while proportional selection is quite sensitive to
them. This insensitivity is a virtue in the case of these
small local neighborhoods and results in an induced
selection pressure on the whole population which is
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Figure 12: Variance in the expected number of off-
spring using linear rank local selection, a 32 x 32
toroidal grid and a neighborhood size of 5 for func-
tion HC10.
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Figure 13: Variance in the expected number of off-
spring using proportional local selection, a 32 x 32
toroidal grid and a neighborhood size of 5 for func-
tion HC10.

roughly equivalent to the centralized case.

In addition to insight into local selection methods,
these results also provide some initial hints about the
role of neighborhood size. Notice that there is a per-
formance improvement in the case of all the three se-
lection schemes when neighborhood size is increased
from 5 to 9 (Figures 8 and 9). The improvement seen
when the neighborhood size is increased from 9 to 13
is quite negligible, suggesting that additional perfor-
mance improvements are unlikely to be obtained via
larger neighborhoods sizes even if we ignore communi-
cation costs.

Figures 8-11 also suggest another interesting trade-
off. Note that the performance of local tournament
selection is very similar to linear ranking selection and
better than proportional selection in the larger neigh-
borhoods. Hence, by increasing the neighborhood size
(and communication costs) we can obtain the perfor-
mance of local ranking selection without the overhead
of ranking.

Is it possible to improve search performance without
increased overhead? This analysis suggests a likely ap-
proach: combine local tournament selection on small
neighborhoods with an elitist policy which replaces the
individual assigned to a grid point by an offspring only
if it has higher fitness. The effect is to strengthen local
selection differentials which, as we have seen, results in
better global search performance. This is illustrated in
Figure 14. Using binary tournament with local elitism
produces behavior similar to linear ranking when a
neighborhood size of 5 is used.
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Figure 14: Best-so-far Performance Curves for linear
rank and binary tournament (with and without local
elitism) local selection schemes using a 32 x 32 toroidal
grid, neighborhood size of 5, for function HC10



4 CONCLUSIONS AND FURTHER
WORK

The results presented here concerning effective decen-
tralization of selection algorithms in order to exploit
finely grained parallel architectures are clearly prelim-
inary, but are already providing some important in-
sights.

These results emphasize the importance of an anal-
ysis of the variance of selection schemes. Without
it one can fall into the trap of assuming that selec-
tion algorithms that have equivalent expected selec-
tion pressure produce similar search behavior. Since
higher variance is generally more strongly correlated
with poor search performance when small population
sizes are involved, to improve performance one must
reduce selection variance and/or increase population
size.

The analysis of the three local selection schemes
pointed out the need for stronger local selection pres-
sure to induce appropriate global selection pressure.
Of the three local selection schemes studied, binary
tournament selection appears to have the most desir-
able properties from both a global search perspective
and communication overhead. In addition, the insights
gained from studying the global selection distributions
induced by the local selection algorithms show how an
elitist policy can be combined with the binary tour-
nament selection to improve performance and reduce
communication costs.

In addition to completing the preliminary results pre-
sented here, we are currently exploring two new direc-
tions: understanding the effects of softening the local
deterministic elitist policy to a probabilistic one, and
studying the effects of other topologies.
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